Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Korean Med Sci ; 38(23): e195, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20234175

ABSTRACT

BACKGROUND: In Korea, during the early phase of the coronavirus disease 2019 (COVID-19) pandemic, we responded to the uncertainty of treatments under various conditions, consistently playing catch up with the speed of evidence updates. Therefore, there was high demand for national-level evidence-based clinical practice guidelines for clinicians in a timely manner. We developed evidence-based and updated living recommendations for clinicians through a transparent development process and multidisciplinary expert collaboration. METHODS: The National Evidence-based Healthcare Collaborating Agency (NECA) and the Korean Academy of Medical Sciences (KAMS) collaborated to develop trustworthy Korean living guidelines. The NECA-supported methodological sections and 8 professional medical societies of the KAMS worked with clinical experts, and 31 clinicians were involved annually. We developed a total of 35 clinical questions, including medications, respiratory/critical care, pediatric care, emergency care, diagnostic tests, and radiological examinations. RESULTS: An evidence-based search for treatments began in March 2021 and monthly updates were performed. It was expanded to other areas, and the search interval was organized by a steering committee owing to priority changes. Evidence synthesis and recommendation review was performed by researchers, and living recommendations were updated within 3-4 months. CONCLUSION: We provided timely recommendations on living schemes and disseminated them to the public, policymakers and various stakeholders using webpages and social media. Although the output was successful, there were some limitations. The rigor of development issues, urgent timelines for public dissemination, education for new developers, and spread of several new COVID-19 variants have worked as barriers. Therefore, we must prepare systematic processes and funding for future pandemics.


Subject(s)
COVID-19 , Child , Humans , Adenosine-5'-(N-ethylcarboxamide) , Republic of Korea , SARS-CoV-2 , Practice Guidelines as Topic
2.
Epidemiol Health ; : e2022085, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2246598

ABSTRACT

Objectives: After the third wave of coronavirus disease (COVID-19), by mid-February 2021, approximately 0.16% of the population was confirmed positive, which appeared to be one of the lowest rates worldwide at that time. However, asymptomatic transmission poses a challenge for COVID-19 surveillance. Therefore, a community-based serosurvey of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was conducted to understand the effectiveness of Korea's strong containment strategy. Methods: We collected 5,002 residual sera samples from January 30 to March 3, 2021 from 265 medical facilities in Seoul, 346 in Kyunggi-do' and 57 in Incheon. Among them, 60 samples from tertiary institutions were excluded. We defined the sub-regions according to the addresses of the medical facilities where the specimens were collected. Elecsys Anti-SARS-CoV-2 was used for the screening test, and positivity was confirmed using the SARS-CoV-2 sVNT Kit. Prevalence was estimated using sampling weight and the Wilson score interval for a binomial proportion with a 95% confidence interval. Results: Among the 4,942 specimens, 32 and 25 tested positive for COVID-19 in the screening and confirmatory tests, respectively. The overall crude prevalence of SARS-CoV-2 antibody was 0.51%. The population-adjusted overall prevalence was 0.55% in women and 0.38% in men. The region-specific estimation was 0.67% and 0.30% in Gyeonggi-do and Seoul, respectively. No positive cases were detected in Incheon. Conclusion: The proportion of undetected cases in South Korea remains low. Therefore, an infection control strategy with exhaustive tracing and widespread pre-emptive testing appears to be effective in containing the spread of the virus in the community.

3.
Ann Lab Med ; 43(2): 137-144, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2089751

ABSTRACT

While the coronavirus disease 2019 pandemic is ongoing, monkeypox has been rapidly spreading in non-endemic countries since May 2022. Accurate and rapid laboratory tests are essential for identifying and controlling monkeypox. Korean Society for Laboratory Medicine and the Korea Disease Prevention and Control Agency have proposed guidelines for diagnosing monkeypox in clinical laboratories in Korea. These guidelines cover the type of tests, selection of specimens, collection of specimens, diagnostic methods, interpretation of test results, and biosafety. Molecular tests are recommended as confirmatory tests. Skin lesion specimens are recommended for testing in the symptomatic stage, and the collection of both blood and oropharyngeal swabs is recommended in the presymptomatic or prodromal stage.


Subject(s)
COVID-19 , Monkeypox , Humans , Monkeypox/diagnosis , COVID-19/diagnosis , Clinical Laboratory Techniques , Pandemics , Republic of Korea
5.
Ann Lab Med ; 42(4): 391-397, 2022 Jul 01.
Article in English | MEDLINE | ID: covidwho-1917192

ABSTRACT

Korean Society for Laboratory Medicine and the Korea Disease Prevention and Control Agency have announced guidelines for diagnosing coronavirus disease (COVID-19) in clinical laboratories in Korea. With the ongoing pandemic, we propose an update of the previous guidelines based on new scientific data. This update includes recommendations for tests that were not included in the previous guidelines, including the rapid molecular test, antigen test, antibody test, and self-collected specimens, and a revision of the previous recommendations. This update will aid clinical laboratories in performing laboratory tests for diagnosing COVID-19.


Subject(s)
COVID-19 , Clinical Laboratory Techniques , Humans , Pandemics , SARS-CoV-2 , Specimen Handling
6.
Viruses ; 14(7)2022 07 06.
Article in English | MEDLINE | ID: covidwho-1917798

ABSTRACT

Rapid antigen tests (RATs) for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are widely used in the Coronavirus disease 2019 (COVID-19) pandemic caused by diverse variants. Information on the real-world performance of RATs for variants is urgently needed for decision makers. Systematic searches of the available literature and updates were conducted in PubMed, Ovid-MEDLINE, Ovid-EMBASE, CENTRAL, and KMBASE for articles evaluating the accuracy of instrument-free RATs for variants up until 14 March 2022. A bivariate random effects model was utilized to calculate pooled diagnostic values in comparison with real-time reverse transcription-polymerase chain reaction as the reference test. A total of 7562 samples from six studies were available for the meta-analysis. The overall pooled sensitivity and specificity of RATs for variants were 69.7% (95% confidence interval [CI] = 62.5% to 76.1%) and 100.0% (95% CI = 98.8% to 100.0%), respectively. When an additional 2179 samples from seven studies reporting sensitivities only were assessed, the pooled sensitivity dropped to 50.0% (95% CI = 44.0% to 55.0%). These findings suggest reassessment and monitoring of the diagnostic utility of RATs for variants, especially for the sensitivity aspect, to facilitate appropriate diagnosis and management of COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Pandemics , Point-of-Care Systems , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
Front Public Health ; 10: 883066, 2022.
Article in English | MEDLINE | ID: covidwho-1862696

ABSTRACT

The COVID-19 pandemic has caused more than 448 million cases and 6 million deaths worldwide to date. Omicron is now the dominant SARS-CoV-2 variant, making up more than 90% of cases in countries reporting sequencing data. As the pandemic continues into its third year, continued testing is a strategic and necessary tool for transitioning to an endemic state of COVID-19. Here, we address three critical topics pertaining to the transition from pandemic to endemic: defining the endemic state for COVID-19, highlighting the role of SARS-CoV-2 testing as endemicity is approached, and recommending parameters for SARS-CoV-2 testing once endemicity is reached. We argue for an approach that capitalizes on the current public health momentum to increase capacity for PCR-based testing and whole genome sequencing to monitor emerging infectious diseases. Strategic development and utilization of testing, including viral panels in addition to vaccination, can keep SARS-CoV-2 in a manageable endemic state and build a framework of preparedness for the next pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2/genetics
8.
Ann Lab Med ; 42(5): 507-514, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1809344

ABSTRACT

With the rapid spread of the coronavirus disease (COVID-19), the need for rapid testing and diagnosis and consequently, the demand for mobile laboratories have increased. Despite this need, there are no clear guidelines for the operation, maintenance, or quality control of mobile laboratories. We provide guidelines for the operation, management, and quality control of mobile laboratories, and specifically for the implementation and execution of COVID-19 molecular diagnostic testing. These practical guidelines are primarily based on expert opinions and a laboratory accreditation inspection checklist. The scope of these guidelines includes the facility, preoperative evaluation, PCR testing, internal and external quality control, sample handling, reporting, laboratory personnel, biosafety level, and laboratory safety management. These guidelines are useful for the maintenance and operation of mobile laboratories not only in normal circumstances but also during public health crises and emergencies.


Subject(s)
COVID-19 , Laboratories , COVID-19/diagnosis , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , SARS-CoV-2/genetics
9.
Biosens Bioelectron ; 196: 113689, 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-1471895

ABSTRACT

We herein describe rapid and accurate clinical testing for COVID-19 by nicking and extension chain reaction system-based amplification (NESBA), an ultrasensitive version of NASBA. The primers to identify SARS-CoV-2 viral RNA were designed to additionally contain the nicking recognition sequence at the 5'-end of conventional NASBA primers, which would enable nicking enzyme-aided exponential amplification of T7 RNA promoter-containing double-stranded DNA (T7DNA). As a consequence of this substantially enhanced amplification power, the NESBA technique was able to ultrasensitively detect SARS-CoV-2 genomic RNA (gRNA) down to 0.5 copies/µL (= 10 copies/reaction) for both envelope (E) and nucleocapsid (N) genes within 30 min under isothermal temperature (41 °C). When the NESBA was applied to test a large cohort of clinical samples (n = 98), the results fully agreed with those from qRT-PCR and showed the excellent accuracy by yielding 100% clinical sensitivity and specificity. By employing multiple molecular beacons with different fluorophore labels, the NESBA was further modulated to achieve multiplex molecular diagnostics, so that the E and N genes of SARS-CoV-2 gRNA were simultaneously assayed in one-pot. By offering the superior analytical performances over the current qRT-PCR, the isothermal NESBA technique could serve as very powerful platform technology to realize the point-of-care (POC) diagnosis for COVID-19.


Subject(s)
Biosensing Techniques , COVID-19 , COVID-19 Testing , Humans , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , SARS-CoV-2 , Sensitivity and Specificity
10.
Ann Lab Med ; 42(1): 96-99, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1350249

ABSTRACT

The sensitivity of molecular diagnostics could be affected by nucleotide variants in pathogen genes, and the sites affected by such variants should be monitored. We report a single-nucleotide variant (SNV) in the nucleocapsid (N) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), i.e., G29179T, which impairs the diagnostic sensitivity of the Xpert Xpress SARS-CoV-2 assay (Cepheid, Sunnyvale, CA, USA). We observed significant differences between the threshold cycle (Ct) values for envelope (E) and N genes and confirmed the SNV as the cause of the differences using Sanger sequencing. This SNV, G29179T, is the most prevalent in Korea and is associated with the B.1.497 virus lineage, which is dominant in Korea. Clinical laboratories should be aware of the various SNVs in the SARS-CoV-2 genome and consider their potential effects on the diagnosis of coronavirus disease 2019.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Diagnostic Techniques , Nasopharynx , Nucleotides , Prevalence , Republic of Korea , Sensitivity and Specificity
11.
Ann Lab Med ; 42(1): 71-78, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1350248

ABSTRACT

BACKGROUND: Seroprevalence studies of coronavirus disease 2019 (COVID-19) cases, including asymptomatic and past infections, are important to estimate the scale of the disease outbreak and to establish quarantine measures. We evaluated the clinical performance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody assays available in Korea for use in seroprevalence studies. METHODS: The sensitivity, specificity, cross-reactivity, and interference of five SARS-CoV-2 antibody assays were evaluated using the following: 398 serum samples from confirmed COVID-19 patients, 510 negative control samples from before 2018 (pre-pandemic), 163 serum samples from patients with SARS, Middle East respiratory syndrome (MERS), and other viral infections, and five samples for the interference study. RESULTS: The sensitivities of the five assays ranged from 92.2% to 98%, and their specificities, including cross-reactivity and interference, ranged from 97.5% to 100%. The agreement rates were excellent (kappa >0.9). Adjustment of the cutoff values could be considered through ROC curve analysis. The positive predictive values of the individual assays varied from 3.5% to 100% at a 0.1% prevalence but were as high as ≥95% when two assays were combined. CONCLUSIONS: The prevalence of COVID-19 in Korea is considered to be exceptionally low at present; thus, we recommend using a combination of two or more SARS-CoV-2 antibody assays rather than a single assay. These results could help select SARS-CoV-2 antibody assays for COVID-19 seroprevalence studies in Korea.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Pandemics , Sensitivity and Specificity , Seroepidemiologic Studies
12.
Infect Control Hosp Epidemiol ; 42(7): 864-868, 2021 07.
Article in English | MEDLINE | ID: covidwho-1316684

ABSTRACT

Rapid diagnostic testing (RDT) can provide prompt, accurate identification of infectious organisms and be a key component of antimicrobial stewardship (AMS) programs. However, their use is less widespread in Asia Pacific than western countries. Cost can be prohibitive, particularly in less resource-replete settings. A selective approach is required, possibly focusing on the initiation of antimicrobials, for differentiating bacterial versus viral infections and identifying locally relevant tropical diseases. Across Asia Pacific, more data are needed on RDT use within AMS, focusing on the impact on antimicrobial usage, patient morbidity and mortality, and cost effectiveness. Moreover, in the absence of formal guidelines, regional consensus statements to guide clinical practice are warranted. These will provide a regionally relevant definition for RDT; greater consensus on its role in managing infections; advice on implementation and overcoming barriers; and guidance on optimizing human resource capacity. By addressing these issues, the outcomes of AMS programs should improve.


Subject(s)
Anti-Infective Agents , Antimicrobial Stewardship , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Asia , Diagnostic Techniques and Procedures , Humans
13.
Ann Lab Med ; 41(6): 588-592, 2021 Nov 01.
Article in English | MEDLINE | ID: covidwho-1264322

ABSTRACT

The rapid antigen test (RAT) for coronavirus disease (COVID-19) represents a potent diagnostic method in situations of limited molecular testing resources. However, considerable performance variance has been reported with the RAT. We evaluated the clinical performance of Standard Q COVID-19 RAT (SQ-RAT; SD Biosensor, Suwon, Korea), the first RAT approved by the Korean Ministry of Food and Drug Safety. In total, 680 nasopharyngeal swabs previously tested using real-time reverse-transcription PCR (rRT-PCR) were retested using SQ-RAT. The clinical sensitivity of SQ-RAT relative to that of rRT-PCR was 28.7% for all specimens and was 81.4% for specimens with RNA-dependent RNA polymerase gene (RdRp) threshold cycle (Ct) values ≤23.37, which is the limit of detection of SQ-RAT. The specificity was 100%. The clinical sensitivity of SQ-RAT for COVID-19 diagnosis was assessed based on the Ct distribution at diagnosis of 33,294 COVID-19 cases in Korea extracted from the laboratory surveillance system of Korean Society for Laboratory Medicine. The clinical sensitivity of SQ-RAT for COVID-19 diagnosis in the Korean population was 41.8%. Considering the molecular testing capacity in Korea, use of the RAT for COVID-19 diagnosis appears to be limited.


Subject(s)
COVID-19/diagnosis , RNA-Dependent RNA Polymerase/genetics , SARS-CoV-2/genetics , COVID-19/virology , COVID-19 Testing/methods , Humans , Nasopharynx/virology , RNA, Viral/analysis , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Republic of Korea , SARS-CoV-2/isolation & purification
15.
Ann Lab Med ; 41(2): 225-229, 2021 Mar 01.
Article in English | MEDLINE | ID: covidwho-874458

ABSTRACT

In response to the ongoing coronavirus disease 2019 (COVID-19) pandemic, an online laboratory surveillance system was established to monitor severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) real-time reverse transcription-PCR (rRT-PCR) testing capacities and results. SARS-CoV-2 rRT-PCR testing data were collected from 97 clinical laboratories, including 84 medical institutions and 13 independent clinical laboratories in Korea. We assessed the testing capacities to utilize SARS-CoV-2 rRT-PCR based on surveillance data obtained from February 7th to June 4th, 2020 and evaluated positive result characteristics according to the reagents used and sample types. A total of 1,890,319 SARS-CoV-2 rRT-PCR testing were performed, 2.3% of which were positive. Strong correlations were observed between the envelope (E) gene and RNA-dependent RNA polymerase (RdRp)/nucleocapsid (N) genes threshold cycle (Ct) values for each reagent. No statistically significant differences in gene Ct values were observed between the paired upper and lower respiratory tract samples, except in the N gene for nasopharyngeal swab and sputum samples. Our study showed that clinical laboratories in Korea have rapidly expanded their testing capacities in response to the COVID-19 outbreak, with a peak daily capacity of 34,193 tests. Rapid expansion in testing capacity is a critical component of the national response to the ongoing pandemic.


Subject(s)
Betacoronavirus/genetics , Clinical Laboratory Services/statistics & numerical data , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Envelope Proteins , Coronavirus Infections/virology , Humans , Laboratories, Hospital , Pandemics , Pneumonia, Viral/virology , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/genetics , Real-Time Polymerase Chain Reaction , Republic of Korea , SARS-CoV-2 , Viral Envelope Proteins/genetics , Viral Proteins/genetics
16.
Emerg Infect Dis ; 26(10): 2469-2472, 2020 10.
Article in English | MEDLINE | ID: covidwho-742705

ABSTRACT

To validate the specimen-pooling strategy for real-time reverse transcription PCR detection of severe acute respiratory syndrome coronavirus 2, we generated different pools including positive specimens, reflecting the distribution of cycle threshold values at initial diagnosis. Cumulative sensitivities of tested pool sizes suggest pooling of <6 specimens for surveillance by this method.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Mass Screening/methods , Pneumonia, Viral/diagnosis , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Humans , Nasopharynx/virology , Oropharynx/virology , Pandemics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
17.
Emerg Infect Dis ; 26(10): 2353-2360, 2020 10.
Article in English | MEDLINE | ID: covidwho-691167

ABSTRACT

External quality assessment (EQA) is essential for ensuring reliable test results, especially when laboratories are using assays authorized for emergency use for newly emerging pathogens. We developed an EQA panel to assess the quality of real-time reverse transcription PCR assays being used in South Korea to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the participation of 23 public health organization laboratories and 95 nongovernmental laboratories involved in SARS-CoV-2 testing, we conducted qualitative and semiquantitative performance assessments by using pooled respiratory samples containing different viral loads of SARS-CoV-2 or human coronavirus OC43. A total of 110 (93.2%) laboratories reported correct results for all qualitative tests; 29 (24.6%) laboratories had >1 outliers according to cycle threshold values. Our EQA panel identified the potential weaknesses of currently available commercial reagent kits. The methodology we used can provide practical experience for those planning to conduct evaluations for testing of SARS-CoV-2 and other emerging pathogens in the future.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Humans , Laboratory Proficiency Testing , Pandemics , Quality Assurance, Health Care , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/methods , Republic of Korea , Respiratory System/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2
19.
Ann Lab Med ; 40(6): 439-447, 2020 11.
Article in English | MEDLINE | ID: covidwho-599917

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early detection of COVID-19 and immediate isolation of infected patients from the naive population are important to prevent further pandemic spread of the infection. Real-time reverse transcription (RT)-PCR to detect SARS-CoV-2 RNA is currently the most reliable diagnostic method for confirming COVID-19 worldwide. Guidelines for clinical laboratories on the COVID-19 diagnosis have been recently published by Korean Society for Laboratory Medicine and the Korea Centers for Disease Control and Prevention. However, these formal guidelines do not address common practical laboratory issues related to COVID-19 real-time RT-PCR testing and their solutions. Therefore, this guideline is intended as a practical and technical supplement to the "Guidelines for Laboratory Diagnosis of COVID-19 in Korea".


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Guanidines/chemistry , Guidelines as Topic , Humans , Nasopharynx/virology , Nucleocapsid Proteins/genetics , Open Reading Frames/genetics , Oropharynx/virology , Pandemics , Phosphoproteins , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Republic of Korea , SARS-CoV-2 , Thiocyanates/chemistry , Viral Envelope Proteins/genetics , Viroporin Proteins
SELECTION OF CITATIONS
SEARCH DETAIL